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Equations for the Extension and Flexure 
of Relatively Thin Thermopiezoelectric Plates 

Subjected to Large Electric Fields 

J.S. Yang1 and R.C. Batra2 

'Department of Mechanical and Aerospace Engineering and Engineering Mechanics 
University of Missouri-Rolla, Rolla, MO 65401* 

2Clifton Garvin Professor, Department of Engineering Science and Mechanics 

Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0219 

ABSTRACT 

A system of approximate two-dimensional equations for the extensional and fiex- 
ural motion of thermopiezoelectric plates subject to large electric fields is derived 
from the three-dimensional equations of thermopiezoelectricity for small strains 
small temperature variations, and strong electric fields. The two-dimensional equa- 
tions are derived by introducing an appropriate expansion for the mechanical dis- 
placement, temperature field, and electric potential in the thickness-coordinate and 
integrating the balance laws and constitutive relations. 

I 

I. INTRODUCTION 

Recently electroelastic equations for the extensional motion of very thin plates 
with fully electroded major surfaces subject to large driving voltages and undergoing 
small strain were derived [1] from the general nonlinear electroelastic equations [2,3] 
These equations have been used to analyze of static and dynamic deformations'of 
laminated beams and plates due to piezoelectric actuators [4-6].   A set of two- 
dimensional equations was subsequently obtained [7] for a higher order approximate 
description of the mechanical and nonlinear electrical behavior of the relatively thin 
electroelastic plates in extensional and flexural motion. The equations are valid for 
either the electroded or unelectroded plates and hence have been used [8] to analyze 
partially electroded actuators which have been shown to have a distributed shear 
stress rather than a singular shear stress of fully electroded actuators. This prevents 
the delamination of the piezoelectric layer from the base plate. 

In the above analysis, only piezoelectric effect is considered, and thermal effect 
is not included.   According to a recent review article by Rao and Sunar [9], the 

Present address:   Department of Mechanical Engineering, Aeronautical Engi- 
neering and Mechanics, Renselaer Polytechnic Institute, Troy, NY 12180. 
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composite intelligent structures have different response characteristics at different 
temperatures and the temperature variation in the piezoelectric materials can affect 
the overall performance of the control system, hence thermal effects are important 
in the precision distributed sensing and control of intelligent structures. Accord- 
ing to Rao and Sunar, the applications of thermopiezoelectricity theory to practical 
engineering problems in general and vibration control of flexible structures in par- 
ticular are very few in the literature and the development of thermopiezoelectric 
sensors/actuators is important for advanced intelligent structures. 

Mindlin [10] derived a set of two-dimensional plate equations based on the linear 
theory of thermopiezoelectricity for small strains, small temperature variations, and 
weak electric fields. Recent works on laminated thermopiezoelectric plates [11 12] are 
also for the linear theory and weak electric fields. It has been noted that piezoelectric 
materials are often operating under large driving voltages or strong electric fields 
[1] hence nonlinear terms in electric fields should be considered. Besides, in [11 12] 
only equations of the balance of linear momentum are derived but the electric charge 
equation and the heat equation are not included. The electric and thermal fields 
have to be obtained separately and hence these equations can not be applied to 
structures with partially electroded actuators. 

A set of equations for electroded very thin thermopiezoelectric plates subject to 
large driving voltages or strong electric fields in extensional motion is derived in [13] 
based on the general nonlinear equations of thermopiezoelectricity [14]; the work in 
[13] generalizes that reported in [1] to include thermal effects.   Here, a system of 
two-dimenswnal equations for the extensional and flexural motion of thermopiezo- 
electric plates subject to large electric fields is derived from the three-dimensional 
equations of thermopiezoelectricity for small strains, small temperature variations 
and strong electric fields. The two-dimensional equations are derived by introducing 
an appropriate expansion for the mechanical displacement, temperature field   and 
electric potentml in the thickness-coordinate and integrating the balance laws and 
constitutive relations through the thickness.   The resulting equations are reduced 
to the uncoupled system of equations describing extensional motion and elementary 
flexure.   These equations generalize those in [7] by including thermal fields    The 
equations are valid for either the electroded or the unelectroded plate and hence can 
be used to analyze either fully or partially electroded actuators. 

II. BASIC EQUATIONS 

It has been shown [13] that the thermoelectroelastic equations for infinitesimal 
strains, small temperature variations, and strong electric fields may be written as 

Di,i = 0 

- Qi.i = Tpi] 

Tv = c,jk,Ski - ehtJEk - XijO - -bklijEkE, 
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D, = eiklSki + cikEk + Pi9 + -XkjiEkEj 

PI = K,Si, +pkEk + aO+ -KjEkEj 

(1) 

Qi x']v,] 

Skl = ^kj + ^l.k) 

Ek = ~<f>,k ■ 

Here a comma followed by an index / denotes partial differentiation with respect 
to the referential coordinate x,, a dot over a variable denotes partial differentiation 
with respect to time and repeated indices are to be summed. The range of indices 
i,j, k,l is 1,2,3. In Eq. (1) p is the mass density, r,, the stress tensor, u, the mechan- 
ical displacement, S{j the infinitesimal strain tensor, Ö, the electric displacement 
vector, <t> the electric potential, E, the electric field, Q{ the heat flux, T? the entropy 
density, T a uniform reference temperature, and 6 the temperature variation. c,jkh 

eikh tik denote the elastic, piezoelectric and dielectric constants, AI; the thermal 
elastic constants, Pi the pyroelectric constants, a is related to specific heat and Kij 

is the heat conductivity tensor. bklij, Xkj„ and 7,-; are nonlinear material constants7 

We note that bklij, the effective electrostrictive constants, include the effect of the 
Maxwell electrostatic stress tensor [13]. Equation (l)j is the balance of linear mo- 
mentum, (1)2 the electrostatic charge equation, (1)3 the heat equation, (1)4_7 the 
constitutive equations, (1)8 the strain-displacement relation, and (1)9 the electric 
field-potential relation.   When the electric fields are weak, quadratic terms on the 
right-hand side of equations (1)4.6 are dropped and Eq. (1) then reduces to that for 
linear thermopiezoelectricity. 

III. TWO-DIMENSIONAL EQUATIONS FOR THIN PLATES 

A plan view and a cross-section of the thin plate with thickness 2h are shown 
in Figure 1 along with the coordinate system. The top and bottom surfaces may 
be identically electroded; the electrodes in a given region are assumed to have a 
potential difference or voltage across them. 

We now obtain approximate two-dimensional mechanical equations of motion, 
charge equation of electrostatics and heat equation for the thin plate shown in Figure 
1 by employing assumed expansion of uy, <f>, and 9 in the thickness coordinate. 
Since only the lowest frequency approximations, i.e., equations of the extensional 
and flexural motion of plates are of interest here, we expand Uj in the form 

„(0)/ ..0) !> = uY>(Xa,t) + X3uf\Xa, t) + X2
3uf>(Xa, t) (2) 

(2) 
in which u;- is included to allow for the free thickness-strains accompanying ele- 
mentary flexure [7]. We also adopt the convention that indices a,b,c,d take values 
1,2. Considering the behavior of <j> across the electrodes   when   they  are  present, 
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Fig. 1, Plan view and cross-section of a partially electroded thin plate. 

we expand A in the form 

4 = *<•>(*.,o + %w*.,t) + (§-i)^)(l.,0 + *{d_imxmtt) (3) 

in which only the 0<U term contributes to the voltage across the electrodes. Equation 
(3) ,s bas.cally taken from [7], with the difference that here we have M Jut J° 

corresponding equation in [7] does not; *«») is needed for a complete description of A 
n the one ectroded reg.on, although in the case treated in [8] it has no contribution 

In an electroded region the two-dimensional plate electric potentials ^(°) and AD 
must be independent of coordinates xa in the plane of the plate. However, in an 
unelectroded reg.on ^) and ^i, are b general ^.^ rf ^ ^      » 

this'expansion could be carried to higher order, but this is the lowest order that fs' 
needed to fuUy descnbe the response of a partially electroded thin plate.   For   h 
temperature field 0, we take [10] 

* = *(0W) + *3*(1)(*.,0 (4) 

bv nTin "Ä T^ \\h ft{1'IS'*»>' the elect"c charge equation (1)2 
by {hxzph.zS/ht-l^xlßt-lfaßl the heat equation (1)3 by {l,x3} integ a e 
the resultmg equat.ons from -A to A and obtain the following mnVtwo-d men fona 
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equations corresponding to the balance of linear momentum 

i 

» >-i) » 'Z-^r'+nn>=pE ffmnü", »=o,i,2 
m=0 

four two-dimensional electric charge equations 

£i*!-£*>P> + 4'>-o 
i-£)(2) _ /j(0) _ ln(l) _ o 

A3"«,«       ^a,a       ^3     + ^3     -0 

and two two-dimensional heat equations 

where 

(5) 

(6) 

KJL + ?r = -?>?(0) 

(/ 

Mr),4").Qi"),'?(B)}=/_*x3-{rt/,JDtl(3tl,}dx3 

F (») C3T3;]-A > <tf° = ik?03]*A 
2/iL ^ = tö&J* A 

HQQ = 2h , 

HQ2 = H2o 

Hoi = Hio 

2. 
Hn = 3 *' 

H\2 = #21 = 0 ,       H; 

and we note that terms FJn' 

M „A A*) 

22 = 7n 

5 

d3     and q3     arise from the integration by parts. 

./O) Terms d3 and d3 ', which are analogous to d\ ' and d3'\ vanish because the x3 

dependence of coefficients of 4>W and <j>(3) vanish at z3 = ±h. We also note that 
in the balance of linear momentum equations (5) the three equations for n = 2 
will not actually occur because they will be eliminated by allowing for the free 

development of u\ accompanying anisotropic flexure [7]. In an electroded region 

in which cßW - V <f>(°), where V equals the voltage, is a constant and the first two 
equations of (6) are not needed to obtain the solution. They simply serve to define 

d3 and d3 in terms of the electric displacement D. However, in an unelectroded 
region in which V is not prescribed these equations are required to obtain a solution. 
Similarly, if temperature is known on both major surfaces of the plate, <?(0) and 
6^ are determined directly from (4) and equation (7) is not needed to obtain the 

solution; it serves to determine q\ and q$' in terms of other variables. However, if 
heat flux is prescribed at either one of the major surfaces of the plate, equation (7) 
is needed to obtain a solution. 
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At this point we have nine two-dimensional stress equations in (5). However 
since we are interested in obtaining only the uncoupled equations of anisotropic 
extension and elementary flexure, it is convenient to rewrite these as separate es- 
sentially extensional and essentially flexural equations. We note these equations are 
coupled due to anisotropy of the plate material. We further note that we can not 
complete the reduction without the plate constitutive relations, which are obtained 
in the next section. For the plate constitutive equations it is convenient to define 
Mmdlin's plate strains, which is done simply by substituting the expansion (2) into 
the strain-displacement relation, Eq. (1)8, and rearranging terms; the result is 

We now note that we will not need SJ? because of the reduction that is to be made 
When elementary flexure and extension are to be uncoupled, from (5), following the 
steps in [7], we may separate the essentially extensional plate equations, 

^.-^0, + ^1, = |^äi1) (10) 

r$. -2# + tf> = \Ph^ + \ph^ 

from the essentially flexural plate equations, 

ril + F^ = 2phü^ + 2-ph^ 

^a-^ + F^ = \ph^ (11) 

r(2)   - 2r(1) 4- pP) - 2„A3,-(0)       2    , 5-(2) Ta3,a       *T33   + *3     = nPh u3     + TP"  "3 

^In the case of extension we must first allow for the free plate thickness-strains 

S33 by setting r33 = 0. Then in order to eliminate the first order extensional 

equations completely we set T£> = 0. This has the effect of eliminating the second 

order equations in (10) completely since all second order plate stress resultants r(2) 

are irrelevant in the approximation, and may be ignored, as may the dynamic terms 
on the right-hand side of (10)3 and (11)3. Furthermore, in order to eliminate flexure 

from the extensional equations, from (11) it is clear that we must have r(?} = 0 
ill s\ til 0*3 ' 

ro4   = °> r33   = °- Collecting all the conditions on the stress resultants, we have 

^=0,    #=0 (12) 

the first of which will be used, in the next section, to reduce the general plate 
thermopiezoelectric constitutive equations to those that are suitable for anisotropic 
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extension. Since we have eliminated flexure, therefore ü3
0) = 0. Also since we are 

well below the lowest thickness resonant frequency of the plate, we may assume 
u-    = 0, ü)    = 0, then all that remains out of (10) is 

(13) 
_(<>)   ,  F(o)     0  ...(0) Tab,a + *b      = 2Phub 

which are the two equations for the extensional motion of thin plates. 

For flexure, we must first allow for the plate thickness strain S$ by setting 

733 = 0. This has the additional effect of eliminating the second order flexural 
equation completely because, as already noted, all second order plate stress resul- 
tants are irrelevant in this approximation, and may be ignored. Then in order to 
eliminate extension from the flexural equations, from (10) it is clear that we must 

^ave Tab   = °> ra3  - 0, T33   = 0. These conditions enable us to write 

# = 0 r.<!>=0,     r<?> = 0 (14) 'ab    ~ u >       '33 

the first of which will be used, in the next section, to reduce the general plate 
thermopiezoelectric constitutive equations to those that are suitable for elementary 

flexure of thin plates. Since we have eliminated extension, therefore ü(°} = 0. Also 
since we are well below the lowest thickness resonant frequency of the plate, we may 

assume that fi}1' = 0, «j2) = 0. In order to complete the reduction to the elementary 

theory of flexure we must take the thickness shear strains si°J to vanish [7]   with 
which (9)2 yields 

«« = -«?» (15) "3.a 

which enables us to obtain a single equation in the one dependent variable u(°] in the 

elementary theory of the flexure of thin plates. Utilizing ü[1} = 0, which eliminates 

rotary inertia, we obtain T$ from (11)2, which when substituted into (ll)i yields 

Tab,ab + F, '(!) j. jp(0) _ 
b\b+F^=2phüi 

,(0) (16) 

This is the equation for the elementary theory of the flexure motion of thin plates. 
Thus, at this stage we have the extensional equations of motion (13) which 

require constitutive equations for T^\ the flexural equations of motion (16) which 

need constitutive equations for T$, the four plate equations (6) for electrostatics 

which necessitate constitutive equations for D^ (n = 0,1,2,3), and two plate heat- 

conduction equations (7) which require constitutive relations for Q^n) (n = 0,1) and 

T/W (n = 0,1). As noted earlier, the constitutive equations will be derived in the 

next section in terms of the nine dependent variables u(0), <^n) (n = 0 1 2 3) and 

*(">(n = 0,l). ' 

To the foregoing plate equations we must adjoin the appropriate initial and 
boundary conditions. For the equations of anisotropic extension (13), at an interface 
separating one region from another we have the well-known continuity condition 

na[ril}] = 0,     [U|
0)] = 0 (17) 
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where na denotes the unit normal directed from the "-" to the "+" side of the 
interface and, in which we have used the usual notation [AJ = A+~A~ for the jump. 

At the edge either nar^ or uf] or some combination thereof is prescribed. For the 
equation of elementary flexure, at an interface we have the continuity condition 

«.[rjfWo,     ^ + Ä = 0,    ÄH=0,     [«<">] = 0        (18) 

where 

r^ = nbrl^     r<i> = „.#,, (19) 

and 54 denotes a unit vector tangent to an interface of separation in the counterclock 

direction. At an edge either naT^nh and r^+dr^/ds or du^/dn and u{°] or some 
combination thereof is prescribed. In addition, there are the well-known conditions 
across corners of discontinuous curves. 

In the case of the two-dimensional plate equations of electrostatics (6), at an 
interface separating one region from another, we require the continuity conditions 

fe(B)J = 0,71 = 0,1,2,3 (20) 

In addition, by multiplying the well-known three-dimensional electrostatic continuity 
conditions [D.na] = 0 by {l,X3/2h,xj/h2 - 1, (x|/A2 - l)x3/h], and integrating 
the resulting equations from -h to h, we obtain the following two-dimensional plate 
continuity conditions 

na[DW-h*DM] = 0,    no[ßW-^(D]=0 (21) 

At an edge either naDi°\ naD^\ n.(Z><2) - h^D^) and na(D
{^ - ^D{

1]
) or *(«>, 

4>( >, ft2' and 4>W or some combination thereof is prescribed. 
For the heat equations (7), the continuity equations are [10] 

[0(°)] = O,    [öW] = 0,    no[g(°)j = 0,    n.[(?Wj = 0 (22) 

At an edge either fl(°) and 0(0 or n<ig(0) and „ag(0 or some combination thereof is 

prescribed. 

IV. TWO-DIMENSIONAL CONSTITUTIVE EQUATIONS 

In this section we obtain constitutive relations for the stress tensor, electric dis- 
placement, heat flux and entropy defined in (8). The resulting constitutive equations 
are then reduced to those appropriate for the uncoupled equations of anisotropic ex- 
tension and elementary flexure by employing Eqs. (12)i and (14)i, respectively. 
Clearly, the constitutive equations are obtained by substituting from (1)4-7 into 
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(8)i, employing (9) and the analogous equations for electrical equations and in- 
tegrating through the thickness. From (1)9 and (3) we find that the analogous 
electrical equations take the form 

,3 = -^)-^(2)-(M_^(3) (23) 

As noted earlier, in this low order treatment, we ignore the second order equa- 

tions completely, and we do not need the plate strains S^f in (9)i, which means 
that for our purposes here, Eq. (9)! takes the form 

£*3^ '(») 
n=0 

(24) 

which is analogous to (23). 

For convenience, we introduce the usual compressed matrix notation for stresses 
and strains. In this convention the tensor indices ij or kl are replaced by p or q 
which take values 1, 2, 3, 4, 5, 6 as ij or kl take values 11, 22, 33, 23 or 32, 31 or 
13, 12 or 21 respectively. Accordingly, we write constitutive equations (l)4_6'in the 
compressed notation as 

■ CpqOq ■ tkpEk - Ap0 hipEkEi 

Di = eiqSq + eikEk + Pi6 + -XhjiEkEj 

pr\ = XgSq + pkEk + a6 + --ykjEkEj 

(25) 

where the sum from 1 to 6 on the repeated matrix indices is understood. We also 
note that in the matrix notation Eq. (24) takes the form 

sq = Y,*"s[n) 

n=0 

Similarly, from Eq. (8)i we obtain 

r(°) 
/« rh 

h Tpdx3   ,       T-W = J^    X3Tpdx3   . 

(26) 

(27) 

Now, substituting from (25) into (27) and recalling the definitions of D{
k
n), g[n) and 

T)in) in (8)i, substituting from (26), (23), (4) and (1)7, and integrating through the 
thickness, we obtain the following plate constitutive relations 

r(O) : 2hcpqSW + 2heaptW - Ueap$ + e3p<f>W _ 2hXpB{0) _ H..^) 

.; 



^ = 2hekpSJ,°) - 2hekafJ + ±Aeta$> ~ £M*(1) + 2hPhB^ + l-Xl]kN^ 

W
(0) = 2AAp5(°) - 2hPa$) + hPa0 - P3<f,W + 2hae(°) + i7l,w/°> 

nw = fA3A,sW - ±A W™ + ±/^« _ iW(2) + 2A,afl(i) + l^i, 

«i1} - -faaw 

where the nonlinear electrical terms A^n) (n = 0,1,2,3) are defined by 

^=[itf»*1? - ^M8))+f^M11 - ^y?)+*(MO,I 

"2> - *3[j§4M3) - ^M0) + «W) -I^M1' + «V«)      (29) 

i 
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16 
"i? = ^~i^? + «VS.») - £(^?> + *?>#>) 

Since we are interested in the low frequency range of extensional and flexural 
motion, we do not need the shear and thermal correction factors [10] in the con- 
stitutive relations. These constitutive relations are not yet in a useful form for our 
purposes because we have not yet imposed the extensional plate relaxation condi- 
tions (12)i and flexural plate relaxation conditions (14)i, which in the compressed 
matrix notation take the forms 

r(0) 

= 0, 

r(°)- = o, 
rW 

40) 

,0) = 0 

(30) 

(31) 

In view of (30) and (31) we introduce a matrix index convention which will be 
of considerable use in the sequel. We let subscripts u, v, w take the values 3, 4, 5 
while subscripts r, s, t take the remaining values 1, 2, 6. This permits us to write 
(30) and (31) as 

(32) r(°> = 0 

We may now write (28)1>2 in the form 

r(i) = = 0 

r(°) = 2hcT3Sf) + 2hcTVS^ + 2AeBr$) - \hear^ 

+ e3rj,M-2h\r9(V-1-b,jrN(? 

r(°) = 2AcB,5i°) + 2hcunSi°) + 2heav,4%) - \heaw<j>M 

+ e3w4>(l)-2h\weM-l-bl]wNV 

15 

+ f W> - ?A»Ar*W - hl]rNlj (i) 

W = lh3cwsSW + Ih^SJ}) + hleaw(j>y _ ±hhaw^ 

1: + >3u,^
2> - ^h3xwew _ i6, .N (i) 

(33) 

Equations (33)2,4 may be readily solved for sl0) and 5^, respectively, with the 
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result 

+ ^c-leW + ±-hl]Wc-lNf? 

W = -rtcwsSM - Ic-Je^O) + Ac-iea^(3) _ J.,-1^2) (34) 

where the matrix sums are over the indices 3, 4, 5 as a result of the convention 
bubstitution from (34) into (33)li3, yields < ' 

3 r r 2 ,jr   '^ 

^ = ^r„s?> + ^w _ ^w + ^(2) _ 2A,    (1) _ i^    (1) 
J ° io 3 3 2 1}T   X] 

where (35) 

Tr3 - cT3 - crvcvwcws ,     xj,ks = ejtj _ eAtl,c~Jc5 

A? = As-Au,c-icVJ,    J?, = 4i/,-Wc. (36) 

We note that the TTS are the Voigt's anisotropic elastic plate constants and the 6> 

are the effective plate electrostrictive constants. The constitutive relations (35) are 
in the form.required for the equations for anisotropic extension (13) and elementary 
flexure (16). At this point we note that the substitution of (15) into (9)2 yields 

c(!) (0) Sab   = -H,ab (37) 

which is an important relation for the fiexural equation. Writing 5^n) in the consti- 

tutive equations (28)3-8 as two separate terms, one containing si"} and the other 

containing 5." in accordance with our values for the indices, and substituting from 
(J4J into the appropriate equations, we obtain 

8A2      ,/« . 2,,     ,nl     h
2 

(2) 
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(0) 

vhere 
(kj = tkj + e-kvCvwejw ,    (kc - 3e*c + hekvc~*ecw 

I = 5ekc + 7ehvc-*ecw ,    ^jh = Xljk + Aijk 

&ijk = k}wc~lekv ,    Pk=Pk + ekvc~*\w 

ä = Kc~vXv ,    7,-j = -y{j + i>ijwc~l\v 

(38) 

(39) 

The constitutive equations in (38) are in the form required for use in the plate 
electrostatic equation (6) and heat equation (7). However, in order to use the 
constitutive equations (35) in the balance equations (13) and (16), they must be 
converted from matrix form back into tensor form. This is accomplished simply by 
replacing r by ab and s by cd wherever they occur in (35). For example 

TJS1 =2hTabcdsi0J + Weal,*® ~ y0ca^c
2) + 03.»*(1) - 2h\lb9(°) - -%ahN^ 

■i,} ~r.ws<i> + £*«.,#> - ^cab*f + %rfW - WtfU 
1; 
n   ijab    ij (40) 

Equations obtained by substituting from constitutive equations (40) and (38) 
into (6), (7), (13) and (16), along with (9)2 for S§] and (37) are nine equations in the 

nine dependent variables uj-0), <l>{0\ jW, ^2), ^(3), flC) and «W, which are nonlinear 
in the plate potentials ^(n). By proper substitutions the boundary conditions can 
also be written in terms of the same nine variables in each region. 

. SUMMARY OF EQUATIONS 

Balance laws 

-Ä + n"" = 2rf 
■iVfJl' + f»^ ü(0) 

^S+4°» = o 

tW-^+V- 0 

LßW _ D(0) _ In(') _ 0 
h?    a>a a<a       /j2^3     -u 

(41) 



i-z>(3) _ LDw _ iDp) , i o(o) _ 
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h~a,a       h3L>3     + hU3     -0 

OÖ + ^^-r^w 

Strain-displacement relations 

c(°) _ 2/„(0) ,    (Oh 

C(!) _      „(0) 

Constitutive equations 

^ = 2ArBW5W + 2A0Mi$) - IV^) + w(i) _ 2AAP ö(o) _ 1 ^ 
O a0 o   ijab     i) 

(42) 

A# (0) 

^ = -g-r.^) + y0ca6$)-l^^^w + ^3a6^)_|A3AP.(I)_Ijp. »(i) 
° io i 3 2 ']"'>'} 

2^i;t    I; 

+ 2%^ P7(0)=2AA^-2Apa^) + lApa^)-p3^)+2Aöö(o) , . 

Continuity conditions 

».[ii0,] = o,   I"i0)] = o 

»■[^In, = 0 ,     [rj? + ^J = 0 

[^(B)l = 0,n = 0,1,2,3 
«.Pi0)]=0,     na[DW] = 0 

(43) 

27..41' 

On h40)] = o 

(44) 
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na[Di2) ~ h2DW] = 0 ,    na\DW - h2D^\ = 0 

[fl(°)] = 0>    [J(')] = 0,    n„[g(°)]=0,    na[Ql1)] = 0 ■■ * / ■. ii _    i 

Definitions of material constants 

i r« — cra       cr»cUUJ
ct«3 i 

mt>cvs > 'ijs ~ 

~ eks       ekwCwvCvs 

">'« — "ijwcu,vcvs 

-1. 

°ijs 

(kj = £kj + ekvc~wejw ,    (kc = 3ekc + 5ek„c~*e, 

C = 5eic + 7ekvc-*eCV) ,    X
P

ijk = Xijk MA- 

L-^ijk = "ijwc
wv 

•cw 

•Ckv ,      Pk=Pk + CkvCVwK 

Ranges of indices 

0 = A„,c~,,A„ ,    7,;- = 7y + bijwc~l
v\v 

(45) 

M.M: 1,2,3; a,6,c,rf: 1,2; p,q : 1,2,3,4,5,6; r,s,t : 1,2,6; u,v,iu : 3,4,5 

(46) 

VI. CONCLUSIONS 

A set of two-dimensional plate equations has been derived for the extension and 
flexure of a thermopiezoelectric plate under strong electric fields. The equations 
are nonlinear in the plate electric potentials and can be applied to fully or partially 
electroded actuators or sensors. These equations include the results of [1], [7] and 
[13] as special cases. 

i 
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